How Solar \oplus Storage systems can meet India's fast growing load?

A Peaking

Solar $\boldsymbol{\oplus}$ Storage

system is already cheaper than power procured from the exchange.
A 100-MW system that provides power during daytime plus ~ 4 hours during morning and evening peak- would need 250 MW of solar co-located with 100 MW/400 MWh of battery storage (by storing 30% of solar output, with 6% curtailed). It would cost -Rs. 4.7/kWh at current prices*, potentially decreasing to Rs. 3.5/kWh by 2030. Latest GUVNL auction has revealed capital cost for Li-ion storage in line with international prices (\sim \$250/kWh)
assuming global benchmark battery pack prices as per Bloomberg, and author estimates of other costs

A Round-The-

 -Clock (RTC)Solar \oplus Storage
system could soon be cheaper than building new coal

A 100-MW system that can provide round the clock power at 95% capacity factor- would need 500 MW of solar panels
co-located with 100 MW/1600 MWh of battery storage (by storing 60% of solar output with 6\% curtailed). The cost of this system would be \sim Rs. 6/kWh at current prices, potentially dropping to Rs. 4 to $4.5 / \mathrm{kWh}$ by 2030. Thus, price of baseload power from solar+storage systems would be competitive with new coal plants within this decade.

- Battery Pack Cost - Battery Pack Replacement - Structural BOS Electrical BOS - EPC

Storage cost can be lowered by co-locating batteries with solar plant
Co-locating battery storage with solar plants reduces the capex by sharing balance-of-system (BOS) costs. Co-locating a 4-hour battery with solar would add Rs. 1.2/kWh to solar tariff at current prices (termed as peaking/storage adder*), potentially dropping to Rs. 0.9/kWh by 2030, as battery pack prices reduce further.

